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ABSTRACT
Carbon Nanotubes (CNTs) have a great potential in many areas like electromechanical 
systems, medical application, pharmaceutical industry etc. The surrounding physical 
environment of CNT is very important on torsional vibration behavior of CNT. Damp-
ing and elastic effect of medium to the torsional vibration of CNTs are investigated 
in the present study. Governing equation of motion of nanotube is obtained using 
Eringen’s Nonlocal Elasticty Theory. The effects of some parameters like nonlocal 
parameter, stiffness parameter and nanotube length are studied in detail. 

Keywords: torsional vibration, carbon nanotubes, nonlocal elasticity, viscoelastic 
medium.

INTRODUCTION

Carbon Nanotubes (CNTs) have been used 
in many areas because of their superior physical 
properties. In recent years, medical and pharma-
ceutical industries have great interest in CNTs. 
Drug transport problem to a specific tissue or cell, 
especially in cancer, may be solved using CNTs. 
Torsional dynamic behavior of CNTs in different 
physical environments is gaining importance in 
such application.

Physical environments like fluid flow or bio-
logical tissue can be modelled as a viscoelastic 
medium, which has damping and elastic charac-
teristics, and the effect to the torsional vibration 
of CNT is a very interesting topic for researchers.

In general, CNTs can be modelled using con-
tinuum theories. Unlike from classical theory, Er-
ingen’s Nonlocal Elasticity Theory includes size 
effects. Eringen [1, 2] stated that: “The stress at 
a point is a functional of the strain field at ev-
ery point of the continuum”. Especially in nano 
dimensions, size dependency gains much impor-
tance because of atomic interactions.

Scientists have shown great interest in the dy-
namic analysis of CNTs in viscoelastic medium 
for years. Lots of works have been carried out. 

Ghavanloo et al. investigated the vibration and 
instability analysis of a CNT resting on a linear 
viscoelastic Winkler foundation based on the 
classical Euler-Bernoulli beam model [3]. Shen 
presented buckling and postbuckling analysis for 
axially compressed microtubules embedded in 
an elastic matrix of cytoplasm. He modelled the 
microtubule as a nonlocal shear deformable cy-
lindrical shell which contains small scale effects 
and the surrounding elastic medium as a Paster-
nak foundation [4]. Soltani et al. developed the 
transverse vibrational model of a viscous-fluid-
conveying SWCNT embedded in biological soft 
tissue. They used the nonlocal Euler–Bernoulli 
beam theory to investigate fluid-induced vibra-
tion of the SWCNT, while viscoelastic behavior 
of the surrounding tissue which is simulated by 
the Kelvin–Voigt model [5]. Ghavanloo et al. in-
vestigated in-plane vibration analysis of curved 
CNTs conveying fluid embedded in viscoelastic 
medium [6]. Zhen et al. studied transverse vibra-
tion of fluid-conveying DWCNTs embedded in 
biological soft tissue. Daneshmand studied cou-
pled cytosol-microtubule mechanical vibrations 
of microtubules [7]. Kazemi-Lari et al. investigat-
ed the influence of viscoelastic foundation on the 
non-conservative instability of cantilever CNTs 
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under the action of concentrated follower force 
[8]. Rafiei et al. investigated vibration character-
istics of non-uniform SWCNTs conveying fluid 
embedded in viscoelastic medium using nonlocal 
Euler-Bernoulli beam theory [9]. Ghorbanpour 
and Arani studied nonlocal vibration of double of 
CNTs system conveying fluid coupled by visco-
Pasternak medium based on nonlocal elasticity 
theory where CNTs are placed in uniform tem-
perature change and magnetic field [10]. Kazemi-
Lari et al. used the nonlocal Euler-Bernoulli beam 
model to predict the static and dynamic structural 
instability of CNTs subjected to a distributed tan-
gential compressive load. They considered the 
CNT to be embedded in a Kelvin-Voigt viscoelas-
tic medium [11]. Lei et al. investigated the dy-
namic behavior of nonlocal viscoelastic damped 
nanobeams. They employed the Kelvin-Voigt 
viscoelastic model, velocity dependent external 
damping and Timoshenko beam theory to estab-
lish the governing equations and boundary condi-
tions for the bending vibration of nanotubes [12].
Rezaee and Maleki considered a more realistic 
model for the CNT conveying viscous fluid which 
is embedded in a viscoelastic medium [13]. Wang 
and Li studied the nonlinear free vibration of the 
nanotube with damping effects. They obtained 
the governing equation of the nonlinear free vi-
bration for the nanotube based on the nonlocal 
elastic theory and Hamilton principle [14]. Pang 
et al. formulated the general governing equa-
tion of transverse wave motion in a viscoelastic 
SWCNT adhered by surface material on the ba-
sis of the nonlocal elasticity theory and the Kel-
vin model [15]. Daneshmand presented a gradi-
ent elasticity shell formulation for free vibration 
analysis of single-walled carbon nanotube placed 
on Winkler/Pasternak foundation. The proposed 
formulation is based on the combined strain-iner-
tia gradient elasticity [16]. 

Nanocomposites are also very popular and 
innovative topic and some new studies are per-
formed. Arani et al. investigated the nonlinear vi-
bration and instability analysis of a bonded double-
smart composite microplate system (DSCMPS) 
conveying microflow based on nonlocal piezoelas-
ticity theory [17]. Karličić et al. studied the free 
longitudinal vibration of a nonlocal viscoelastic 
double-nanorod system (VDNRS). They assumed 
that a light viscoelastic layer continuously couples 
two parallel nonlocal viscoelastic nanorods. Their 
model is aimed at representing dynamic interac-
tions in nanocomposite materials [18].

Also boron nitride nanotubes can be used in-
stead of carbon nanotubes. Arani et al. studied 
nonlinear free vibration and instability of fluid-
conveying double-walled boron nitride nanotubes 
(DWBNNTs) embedded in viscoelastic medium. 
They considered the effects of the transverse 
shear deformation and rotary inertia by utilizing 
the Timoshenko beam theory. Arani and Roudbari 
developed the nonlocal longitudinal and trans-
verse vibrations of coupled boron nitride nano-
tube (BNNT) system under a moving nanopar-
ticle using piezoelastic theory and surface stress 
based on Euler-Bernoulli beam [19]. 

Torsional dynamic analysis of CNTs can be 
useful for modelling in nano-products. According 
to author’s limited literature knowledge, present 
topic has not been investigated yet. In next sec-
tion, governing equation of motion of the CNT 
will be obtained using nonlocal elasticity theory. 

GOVERNING EQUATION OF CNT   
WITH VISCOELASTIC MEDIUM

A nanotube of length L and diameter d is con-
sidered. If the Newton’s second law is applied to 
nanotube for torsional vibration, the governing 
equation is obtained [20]:
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Eq. (11) is the governing equation of motion for CNT embedded in a viscoelastic medium. With 

harmonic vibration assumption, angular displacement of CNT can be defined as in Eq. (12): 
𝜃𝜃(𝑥𝑥, 𝑡𝑡) = 𝐺𝐺(𝑥𝑥) 𝑒𝑒𝜆𝜆𝑡𝑡          (12) 

where A(x) is the amplitude of torsional displacement and λ is the characteristic parameter for CNT. If 
Eq. (12) is inserted into Eq. (11) with dimensionless parameter �̅�𝑥 = 𝜕𝜕
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where 𝛺𝛺 is the frequency parameter coefficient, 𝐶𝐶 is the damping parameter coefficient and 𝐾𝐾 is 
stiffness parameter of CNT as defined in Eq. (16): 
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for Clamped-Clamped (C-C) boundary condition, 𝛽𝛽 = 𝑛𝑛𝑛𝑛 can be found. If Eq. (16) is rearranged, Eq. 
(17) can be obtained: 
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𝐿𝐿2) (𝜆𝜆2𝛺𝛺 − 𝜆𝜆𝐶𝐶 − 𝐾𝐾)] + 𝛽𝛽2 = 0        (17) 

 
Roots of the characteristic equation in Eq. (17), are given the characteristic value for CNT 

embedded in a viscoelastic medium. 𝜆𝜆2𝛺𝛺 can be defined as non-dimensional characteristic parameter. 
Its imaginary part can be defined as the non-dimensional damping (NDD) and real part can be defined 
as the non-dimensional frequency (NDF), respectively. 
 
NUMERICAL RESULTS AND DISCUSSION 

In this section, torsional vibration analysis of CNT embedded in a viscoelastic medium is carried 
out for different stiffness parameters, nanotube length and nonlocal parameters. Material properties 
accepted as shear modulus(G)=0.46 TPa, density(ρ)=1300kg/m3, poisson ratio(ν)=0.19, nanotube 
inner radius (R1)=0.68 nm and thickness of nanotube(h)=0.066 nm. 

Validation of the present nonlocal Euler-Bernoulli model is investigated by authors in Ref. [20]. 
According to longitudinal wave propagation, similar results are found. In Fig. 2, changing of torsional 
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for Clamped-Clamped (C-C) boundary condition, 𝛽𝛽 = 𝑛𝑛𝑛𝑛 can be found. If Eq. (16) is rearranged, Eq. 
(17) can be obtained: 

[(1 + 𝛽𝛽2 𝜇𝜇
𝐿𝐿2) (𝜆𝜆2𝛺𝛺 − 𝜆𝜆𝐶𝐶 − 𝐾𝐾)] + 𝛽𝛽2 = 0        (17) 

 
Roots of the characteristic equation in Eq. (17), are given the characteristic value for CNT 

embedded in a viscoelastic medium. 𝜆𝜆2𝛺𝛺 can be defined as non-dimensional characteristic parameter. 
Its imaginary part can be defined as the non-dimensional damping (NDD) and real part can be defined 
as the non-dimensional frequency (NDF), respectively. 
 
NUMERICAL RESULTS AND DISCUSSION 

In this section, torsional vibration analysis of CNT embedded in a viscoelastic medium is carried 
out for different stiffness parameters, nanotube length and nonlocal parameters. Material properties 
accepted as shear modulus(G)=0.46 TPa, density(ρ)=1300kg/m3, poisson ratio(ν)=0.19, nanotube 
inner radius (R1)=0.68 nm and thickness of nanotube(h)=0.066 nm. 

Validation of the present nonlocal Euler-Bernoulli model is investigated by authors in Ref. [20]. 
According to longitudinal wave propagation, similar results are found. In Fig. 2, changing of torsional 
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By using the Eq. (4-6), we get the constitute relation as: 
𝑆𝑆 − (𝑒𝑒0𝑎𝑎)2 𝜕𝜕2𝑆𝑆

𝜕𝜕𝜕𝜕2 = 𝐺𝐺𝐺𝐺𝐺𝐺            (7) 

𝑇𝑇 − (𝑒𝑒0𝑎𝑎)2 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2 = 𝐺𝐺𝐼𝐼𝑃𝑃

𝜕𝜕𝜕𝜕
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If Eq. (8) is inserted into Eq. (1) one obtains: 

𝐺𝐺𝐼𝐼𝑃𝑃
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 = 𝜌𝜌𝐼𝐼𝑃𝑃

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2 (1 − 𝜇𝜇 𝜕𝜕2

𝜕𝜕𝜕𝜕2) − 𝑇𝑇𝑒𝑒 (1 − 𝜇𝜇 𝜕𝜕2

𝜕𝜕𝜕𝜕2)          (9) 
 

If the nonlocal parameter is chosen as =0 in Eq. (9), the classical elasticity equation is obtained 
respectively. Te defines the external torque load and means elastic and damping effect of viscoelastic 
medium in this study. 

𝑇𝑇 = 𝑘𝑘𝑡𝑡𝜃𝜃 + 𝑐𝑐𝑡𝑡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡             (10) 

 
where kt is the stiffness and ct is the damping coefficient of viscoelastic medium. If Eq. (10) is inserted 
into Eq. (9), Eq. (11) is obtained: 

𝐺𝐺𝐼𝐼𝑃𝑃
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𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕2𝜕𝜕𝑡𝑡 = 0     (11) 

 
Eq. (11) is the governing equation of motion for CNT embedded in a viscoelastic medium. With 

harmonic vibration assumption, angular displacement of CNT can be defined as in Eq. (12): 
𝜃𝜃(𝑥𝑥, 𝑡𝑡) = 𝐺𝐺(𝑥𝑥) 𝑒𝑒𝜆𝜆𝑡𝑡          (12) 

where A(x) is the amplitude of torsional displacement and λ is the characteristic parameter for CNT. If 
Eq. (12) is inserted into Eq. (11) with dimensionless parameter �̅�𝑥 = 𝜕𝜕

𝐿𝐿 assumption, Eq. (13) is obtained: 
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If Eq. (13) is reorganized, Eq. (14) is obtained: 
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for Clamped-Clamped (C-C) boundary condition, 𝛽𝛽 = 𝑛𝑛𝑛𝑛 can be found. If Eq. (16) is rearranged, Eq. 
(17) can be obtained: 
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𝐿𝐿2) (𝜆𝜆2𝛺𝛺 − 𝜆𝜆𝐶𝐶 − 𝐾𝐾)] + 𝛽𝛽2 = 0        (17) 

 
Roots of the characteristic equation in Eq. (17), are given the characteristic value for CNT 

embedded in a viscoelastic medium. 𝜆𝜆2𝛺𝛺 can be defined as non-dimensional characteristic parameter. 
Its imaginary part can be defined as the non-dimensional damping (NDD) and real part can be defined 
as the non-dimensional frequency (NDF), respectively. 
 
NUMERICAL RESULTS AND DISCUSSION 

In this section, torsional vibration analysis of CNT embedded in a viscoelastic medium is carried 
out for different stiffness parameters, nanotube length and nonlocal parameters. Material properties 
accepted as shear modulus(G)=0.46 TPa, density(ρ)=1300kg/m3, poisson ratio(ν)=0.19, nanotube 
inner radius (R1)=0.68 nm and thickness of nanotube(h)=0.066 nm. 

Validation of the present nonlocal Euler-Bernoulli model is investigated by authors in Ref. [20]. 
According to longitudinal wave propagation, similar results are found. In Fig. 2, changing of torsional 
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Eq. (11) is the governing equation of motion for CNT embedded in a viscoelastic medium. With 

harmonic vibration assumption, angular displacement of CNT can be defined as in Eq. (12): 
𝜃𝜃(𝑥𝑥, 𝑡𝑡) = 𝐺𝐺(𝑥𝑥) 𝑒𝑒𝜆𝜆𝑡𝑡          (12) 

where A(x) is the amplitude of torsional displacement and λ is the characteristic parameter for CNT. If 
Eq. (12) is inserted into Eq. (11) with dimensionless parameter �̅�𝑥 = 𝜕𝜕
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If Eq. (13) is reorganized, Eq. (14) is obtained: 
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where 
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𝐿𝐿2[−𝜆𝜆2𝛺𝛺2+𝜆𝜆𝐶𝐶+𝐾𝐾]             (15) 

where 𝛺𝛺 is the frequency parameter coefficient, 𝐶𝐶 is the damping parameter coefficient and 𝐾𝐾 is 
stiffness parameter of CNT as defined in Eq. (16): 
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for Clamped-Clamped (C-C) boundary condition, 𝛽𝛽 = 𝑛𝑛𝑛𝑛 can be found. If Eq. (16) is rearranged, Eq. 
(17) can be obtained: 
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𝐿𝐿2) (𝜆𝜆2𝛺𝛺 − 𝜆𝜆𝐶𝐶 − 𝐾𝐾)] + 𝛽𝛽2 = 0        (17) 

 
Roots of the characteristic equation in Eq. (17), are given the characteristic value for CNT 

embedded in a viscoelastic medium. 𝜆𝜆2𝛺𝛺 can be defined as non-dimensional characteristic parameter. 
Its imaginary part can be defined as the non-dimensional damping (NDD) and real part can be defined 
as the non-dimensional frequency (NDF), respectively. 
 
NUMERICAL RESULTS AND DISCUSSION 

In this section, torsional vibration analysis of CNT embedded in a viscoelastic medium is carried 
out for different stiffness parameters, nanotube length and nonlocal parameters. Material properties 
accepted as shear modulus(G)=0.46 TPa, density(ρ)=1300kg/m3, poisson ratio(ν)=0.19, nanotube 
inner radius (R1)=0.68 nm and thickness of nanotube(h)=0.066 nm. 

Validation of the present nonlocal Euler-Bernoulli model is investigated by authors in Ref. [20]. 
According to longitudinal wave propagation, similar results are found. In Fig. 2, changing of torsional 
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embedded in a viscoelastic medium. 𝜆𝜆2𝛺𝛺 can be defined as non-dimensional characteristic parameter. 
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In this section, torsional vibration analysis of CNT embedded in a viscoelastic medium is carried 
out for different stiffness parameters, nanotube length and nonlocal parameters. Material properties 
accepted as shear modulus(G)=0.46 TPa, density(ρ)=1300kg/m3, poisson ratio(ν)=0.19, nanotube 
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Validation of the present nonlocal Euler-Bernoulli model is investigated by authors in Ref. [20]. 
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accepted as shear modulus(G)=0.46 TPa, density(ρ)=1300kg/m3, poisson ratio(ν)=0.19, nanotube 
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Roots of the characteristic equation in Eq. 
(17), are given the characteristic value for CNT 
embedded in a viscoelastic medium.  can be de-
fined as non-dimensional characteristic param-
eter. Its imaginary part can be defined as the non-
dimensional damping (NDD) and real part can be 
defined as the non-dimensional frequency (NDF), 
respectively.

NUMERICAL RESULTS AND DISCUSSION

In this section, torsional vibration analy-
sis of CNT embedded in a viscoelastic medium 
is carried out for different stiffness parameters, 

nanotube length and nonlocal parameters. Ma-
terial properties accepted as shear modulus G = 
0.46 TPa, density ρ = 1300 kg/m3, poisson ratio 
ν = 0.19, nanotube inner radius R1 = 0.68 nm and 
thickness of nanotube h = 0.066 nm.

Validation of the present nonlocal Euler-
Bernoulli model is investigated by authors in 
Ref. [20]. According to longitudinal wave prop-
agation, similar results are found. In Figure 2, 
changing of torsional propagation frequency 
with wave number can be seen. End of the first 
Brillion zone, good agreement is observed with 
Lattice Dynamic results.

In Figures 3–5, changing of NDF with nonlo-
cal parameter (µ) for different stiffness parameter 
(K) and nanotube length (L) is seen. NDF is de-
creased with increasing nonlocal parameter, stiff-
ness parameter (K) and nanotube length (L).

In Figure 6, changing of NDD with nonlocal 
parameter (µ) for different stiffness parameters 

Fig. 2. Torsional wave propagation results according to different theories

Fig. 3. Variation of NDF with nonlocal parameter (L = 5 nm)
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Fig. 4. Variation of NDF with nonlocal parameter (L = 10 nm)

Fig. 5. Variation of NDF with nonlocal parameter (L = 20 nm)

Fig. 6. Variation of NDD with nonlocal parameter
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(K) and nanotube length (L) is seen. NDD is not 
changed with increasing nonlocal parameter (µ) 
and stiffness parameter (K); but with increased 
nanotube length, NDD is increased, respectively. 

CONCLUSION

Free torsional vibration analysis of CNT em-
bedded in a viscoelastic medium is investigated in 
detail. Governing equation of motion is obtained 
using Eringen’s Nonlocal Elasticity Theory. 
Nonlocal parameter and stiffness parameter can 
be effected only NDF in decreasing way. Nano-
tube length can be effected NDF decreasingly and 
NDD increasingly in contrast. Present results can 
be useful in design of nano-electromechanical 
products, nano-bearings, medical applications 
and pharmaceutical industry, possibly.
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